The sloppy model universality class and the Vandermonde matrix

نویسندگان

  • Joshua J. Waterfall
  • Fergal P. Casey
  • Ryan N. Gutenkunst
  • Kevin S. Brown
  • Christopher R. Myers
  • Piet W. Brouwer
  • Veit Elser
  • James P. Sethna
چکیده

Joshua J. Waterfall, Fergal P. Casey, Ryan N. Gutenkunst, Kevin S. Brown, Christopher R. Myers, Piet W. Brouwer, Veit Elser, James P. Sethna 1 Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA 2 Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA 3 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA and Cornell Theory Center, Cornell University, Ithaca, NY 14853, USA (Dated: February 4, 2008)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sloppy-model universality class and the Vandermonde matrix.

In a variety of contexts, physicists study complex, nonlinear models with many unknown or tunable parameters to explain experimental data. We explain why such systems so often are sloppy: the system behavior depends only on a few "stiff" combinations of the parameters and is unchanged as other "sloppy" parameter combinations vary by orders of magnitude. We observe that the eigenvalue spectra fo...

متن کامل

Linear Projections of the Vandermonde Polynomial

An n-variate Vandermonde polynomial is the determinant of the n × n matrix where the ith column is the vector (1, xi, x 2 i , . . . , x n−1 i ) T . Vandermonde polynomials play a crucial role in the theory of alternating polynomials and occur in Lagrangian polynomial interpolation as well as in the theory of error correcting codes. In this work we study structural and computational aspects of l...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Spi Connuent Vandermonde Matrices Using Sylvester's Structures Connuent Vandermonde Matrices Using Sylvester's Structures

In this paper we rst show that a con uent Vandermonde matrix may be viewed as composed of some rows of a certain block Vandermonde matrix As a result we derive a Sylvester s structure for this class of matrices that ap pears as a natural generalization of the straightforward one known for usual Vandermonde matrices Then we present some applications as an illustration of the established structur...

متن کامل

Displacement Structure Approach to Polynomial Vandermonde and Related Matrices

In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach allows us to carry over all these results to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006